Roll No.

333554(33)

B. E. (Fifth Semester.) Examination, April-May/ Nov.-Dec. 2020

(New Scheme)

(IT Branch)

OPERATING SYSTEM

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Attempt any two parts from parts (a), (b) and (c) of each question. Each part carries equal 8 marks.

W A E D O Unit-I was made 2004 più

1. (a) Explain various services provided by O.S. What do you mean by command interpreter and system calls?

- (b) Differentiate between multiprogramming, time sharing and real time systems. Also give 2 examples of each.
- (c) Write merits and demerits of contiguous, linked and indexed allocation for the file system.

ASIV - Index on Herrin Unit-II at males with the I at

- 2. (a) What is Process? Explain PCB and Process states.
 - (b) What is Scheduler? Explain different characteristic of scheduling.
 - (c) Five batch jobs A through E, arrive at a computer center at almost the same time. They have estimated running times of 10, 6, 2, 4 and 8 minutes. Their priorities are 3, 5, 2, 1 and 4 respectively with 5 being the highest priority. Determine turn around time for the following:
 - (i) Round robin (Time quantum 2 min)
 - (ii) Priority scheduling
 - (iii) FCFS (Run in order 10, 6, 2, 4, 8)
 - (iv) Shortest job first

Unit-III

- 3. (a) Write short notes on Segmentation, Page Offset, Shared pages & Compaction.
 - (b) A computer has 4 page frames. The time of loading, time of last access and the R and M bits for each page are as shown below:

Page	Loaded	Last Ref	R	M
0	126	286	0,	0
1	245	262	1	0
2	120	275	0.0	1
3	170	281	B JULIO	1

Which page will NRU, FIFO, LRU and second chance replace?

(c) What is Demand Paging? Explain performance of demand paging.

Unit-IV

(a) Explain Reader / Writer problem. Give the suggestion to solve the problem.

[4]

(b) Consider the following snapshot of a system.

	Allocation	Max	Available
P0	0 0 1 2	0 0 1 2	1 5 2 0
P1	1 0 0 0	1750	
P2	1 3 5 4	2 3 5 6	
P3	0 6 3 2	0 6 5 2	
P4 =	0 0 1 4	0656	

Using banker's algorithm / safety algorithm to solve the following:

- (i) Is the system safe state.
- (ii) Construct Need matrix
- (iii) If request process P1 arrives for (0 4 2 0) can it be immediately granted.
- (c) Explain different deadlock recovery methods.

to promine on this Cunit-V | Standard as all March

- (a) Write short notes on Device driver, Device controller, DMA, Interrupt handler.
 - (b) Compare the features of MS DOS, MS Windows, LINUX & UNIX operating systems.
 - (c) Explain Distributed file system.